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ABSTRACT 

Recently proposed turbulence transport equations have been incorporated into the 
Marker-and-Cell method for the numerical calculation of transient flows of viscous 
incompressible fluids. The results account automatically for the creation, convection, 
diffusion, and decay of turbulence and for the effects of the turbulence on the mean flow. 

INTRODUCTION 

The Marker-and-Cell (MAC) method [l]-[3] has been used to solve numerically 
a wide variety of problems concerning the transient dynamics of viscous incom- 
pressible fluids in several space dimensions. Examples include the splash of a 
liquid drop [4], [5], surge wave formation from the release of water behind a 
sluice gate [6], the flow of density currents [7], formation of a von K&man vortex 
street [8], and Rayleigh-Taylor instability of a two-fluid system [9]. 

Some of the examples demonstrate the early stages of transition to turbulence, 
but it has become clear that fully developed turbulence cannot be calculated in the 
near future because of resolution limitations on all presently available computers. 
The situation resembles that of gas dynamics itself in which the calculation of 
individual molecular trajectories would be a hopeless task in any but the most 
limited circumstances. 

The familiar alternative for fluid-flow studies is to introduce some mean prop- 
erties of the molecular dynamics; these are such field variables as mean velocity, 
pressure, temperature, and viscous stress. For turbulence, a recent proposal [lo], 
[l l] is closely analogous. The effects of turbulence are represented by a set of field 
variables expressing the required mean properties of the detailed fluctuations, and 
for these turbulence field variables there are corresponding transport equations 
describing the Eulerian variations in terms of appropriate creation, convection, 
diffusion, and decay terms. 

94 
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The turbulence transport equations are of considerable complexity, so that 
analytical solutions are now possible only for a small number of specialized 
circumstances. Accordingly, their greatest utility comes from incorporation into a 
numerical method (such as MAC) for the solution of fluid dynamics problems, 
and utilizing the available high-speed computers. The purpose of this paper is to 
describe such a combination of techniques by which turbulence can be represented 
with considerable accuracy for both transient and steady-state problems. We also 
show that turbulence introduces diffusive effects that stabilize the numerical 
calculations at high Reynolds numbers, thereby extending considerably the 
usefulness of the MAC technique without the necessity of introducing implicit or 
explicit artificial diS.rsive stabilizers. The present paper is formulated for problems 
with no appreciable dynamics in regions of very weak turbulence, for which 
additional complications arise. 

THE EQUATIONS 

The complete set of differential equations contains the incompressibility 
condition 

the momentum equation 

$+ + uk 2 = gj - 2 (T + f 4) + & NV + 4 4, 
k 3 

the turbulence energy equation 

the decay-term equation 

together with the relationships 

(1) 

(2) 

2&, 

(3) 

(4) 

(5) 
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A = /W + WV), (7) 

A’ = p’(1 + 80/v>. (8) 

Here, uk is the component of mean velocity in the direction of xk , gj is the gravi- 
tational acceleration, y is the ratio of mean pressure to (constant) density, q is the 
turbulence kinetic energy per unit mass, v is the (constant) molecular kinematic 
viscosity coefficient, u is the (variable) turbulence kinematic viscosity coefficient, 
ejk is the rate-of-strain tensor (ejlc I- &/ax, + 8u,/8xj), 9 is the turbulence 
energy decay function, (A)ljz is proportional to the ratio between turbulence 
integral scale and turbulence microscale, and s is proportional to the turbulence 
integral scale (but equal to the microscale in the limit of weak turbulence). In 
addition, there are several dimensionless, universal constants, of which 01, y, 8, and 
a3 are near unity, /3 = 5 and /I’ w 10, a is slightly less than 2.0, a, and a4 are small 
or zero, while 6 and 8’ are of the order of 0.2. The probable values and significances 
of the various constants are discussed in several other publications [lo], [12]. 

These, then, are the equations to be solved. They are tensor invariant, Galilean 
invariant, rotationally invariant, and universal in the sense that the coefficients are 
not problem-dependent. Thus, it is possible to incorporate them into a numerical 
solution technique with the expectation of broad applicability. 

Their principal limitation is implied by the scalar turbulence viscosity function, 
which means decreasing accuracy as non-isotropy increases. (Tests in problems 
with strong non-isotropy, however, show that this is not as serious a limitation as 
might be expected [IO], [12].) 

The initial conditions for these equations describe the state of the mean flow, 
together with the initial “noise” level. If u = 0 at t = 0, then turbulence can never 
occur. For problems in which only the steady state is of interest, the initial value of u 
is otherwise of no significance. In transient problems both u and s (or functions 
thereof) must be available to completely specify the initial state; unfortunately, 
many experimentalists have only measured q in their initial flow, so that complete 
specification is seldom available for such comparison calculations, and the initial 
scale, for example, must be guessed on the basis of plausibility arguments. 

The boundary conditions at a rigid, no-slip wall are such that u and s both 
vanish, and also q = 0, ~3 = 0. [The vanishing of ~3 follows from Eq. (4), in that 
the decay term in that equation would approach (- m) at a wall if C3 did not there 
vanish, and the decay of ~3 to zero would take place immediately.] In numerical 
calculations, free-slip walls are also of interest for two purposes. They represent 
truly no-slip walls for circumstances in which the expected boundary layer is much 
narrower than the finite-difference zones. They also are convenient as lines of 
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symmetry, in which only half of a symmetric or antisymmetric flow region need be 
calculated. Free-slip-wall boundary conditions are determined by specifying that 
the reflected flow region be the same or the reflection of that on the calculated side 
of the wall. 

One aspect of the initial conditions for these finite-difference calculations of 
turbulence reflects crucially upon the basic interpretations of the turbulence 
transport theory itself. This is the question: Which part of the detailed flow should 
be called the turbulence fluctuations and which part should be called the mean 
flow? In other words: Would we get the same result from two calculations in which 

(a) the large eddies are resolved as part of the mean flow, or 
(b) the large eddies are not resolved but instead absorbed into the 

values of u and S? 

Two considerations reflect upon the answers to these questions. First, the 
specification of 0 and s for a particular field of turbulence implies a local spectrum 
(like a slightly-perturbed Maxwell-Boltzmann molecular-velocity distribution) 
which departs only to lowest order from a local equilibrium spectrum. Thus the 
resolved large-scale structure must represent that part of the spectrum that departs 
strongzyfrom this assumed near equilibrium, forming, at least in principle, a criterion 
for separating the detailed flow into the turbulent and mean parts. 

The second consideration concerns the transport of total kinetic energy, both 
mean and turbulent. Let qT be that total. Then the differential equations can be 
combined to show that 

where ~j is the fluctuating part of the flow and the bar implies ensemble average. 
Thus we conclude that the transport of total kinetic energy is “nearly” independent 
of the division into mean and turbulence parts. 

Fluctuating laminar flows (from laminar instability) require additional inter- 
pretive considerations. These can be represented by the turbulence field variable 
theory only with the inclusion of several additional features [13]. In the present 
formulation, they are to be considered part of the mean flow. 

THE BASIC MAC METHOD 

The basic MAC technique has been described in detail elsewhere [l], [3], so that 
only a brief review will be given here. 
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The computational region in MAC is based on a rectangular mesh of fixed 
Eulerian cells through which the fluid moves, along with a set of marker particles 
to denote the fluid configuration. As described here, we are concerned with two- 
dimensional Cartesian coordinates and a single fluid that fills the mesh, although 
the method has been successfully applied to problems involving several distinct 
fluids [3], [7], [9], free-surface flows [2], [4], and has been extended to cylindrical 
geometry [5], [6]. To achieve this versatility, the method is based upon pressure 
and velocity as the primary variables, rather than the vorticity and stream function. 
This is of advantage particularly in the application of the free surface boundary 
condition of vanishing or prescribed normal stress. It is also an aid in visualizing 
the physical significance of the results and of any extensions to the basic technique. 

The x and y coordinate axes of the MAC mesh are horizontal and vertical, 
respectively, with the origin located at the lower left corner of the computing 
region. The corresponding velocity components are u and V, while p) is the ratio of 
pressure to (constant) density, although we simply refer to y as “pressure.” 

In our finite-difference approximation, the cells are numbered by the indices i 
and j, which count cell center positions in the horizontal and vertical directions 
respectively. Cell boundary positions are thus labeled with half-integer values of 
the indices. The rectangular cells are of dimensions 6x by Sy. The placement of 
the local field variables is shown in Fig. 1. 

FIG. 1. Placement of field variables about a MAC cell. Pressure is defined at the cell center, 
and velocities are defined on the cell boundaries. 

The calculation proceeds through a sequence of time cycles, each advancing the 
entire fluid configuration through a small but finite increment of time 6t. 

The derivation of the finite difference equations is based upon the following 
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sequence of events, which advance the fluid configuration from one time step to 
the next. 

The complete velocity field is known at the beginning of the cycle, either from 
the initial conditions or as a result of the previous cycle of calculation. This 
velocity field is conservative in that the finite-difference analogy of velocity 
divergence vanishes for every cell. 

First, the pressure for each cell is obtained by solving a finite-difference Poisson’s 
equation which satisfies the incompressibility condition, and whose source term is 
a function of the velocities. 

Second, the full finite-difference Navier-Stokes equations are used to find the 
new velocities throughout the mesh. 

Third, the marker particles are moved with a weighted average of the four 
nearest cell velocities. Particles may be created at an input boundary or destroyed 
at an output boundary as required. For confined-flow problems, the marker 
particles do not enter directly into the calculation but are used merely to define 
the fluid configuration. For free-surface flows they show which cells are on the 
surface and therefore need special treatment. 

Finally, boundary condition values are adjusted in such a way that the next 
cycle can begin. The time counter is advanced, and results are printed or plotted as 
desired. 

Since the results of each cycle act as initial conditions for the next one, the 
calculation may be continued for as many cycles as necessary to develop the 
solution. In particular, the development of large-amplitude distortions or free 
surfaces folding back on themselves have no adverse effects on the accuracy or 
calculability of the problem. 

TURBULENT TRANSPORT IN MAC 

The specialization of turbulence transport effects in two space dimensions to 
MAC is primarily manifested in the addition of new terms in the MAC momentum 
equations, plus equations for d (= u2/s2) and DISS [- (2~//?) 91. The basic 
differential equations for this form of MAC are specialized from Eqs. (l)-(8): 
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a DISS + au DISS + au DISS 
at ax aY 

2vA’ DISS - 
s2 

where Eq. (9) is the incompressibility condition, Eqs. (10) and (11) are the momen- 
tum equations, and Eqs. (12) and (13) are the turbulence transport equations. In 
what follows, we take 6’ = 6. This restriction, together with the simple transport 
flux forms used here, imply restriction from problems with very weak turbulence, 
U/V 2 10, as described in Ref. 13. 

It should be mentioned that we have found it useful to base the nonturbulent 
MAC difference equations on the viscous term -VW x V x u rather than vV2u, 
as had been used in the earIy MAC technique publications. The result is con- 
siderable simplification, rather than increased accuracy. The analogous form to 
the “double-curl” differencing is also used in the following difference equations 
with turbulence. 

Our finite-difference approximations use a left-side superscript to denote the 
time cycle, in addition to the right-side i and j space-indexing subscript and 
superscript. Thus, the horizontal velocity at the time t = (n + 1) 6t would be 
designated n+1u:-1,2 . When the cycle-number index is omitted, it is assumed to 
be n, the value of the quantity at the beginning of the cycle, 
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The finite-difference approximations to Eqs. (10) through (13) are written in 
the following form: 

“+l&,2 = n&l,2 + at 
I 

(&)” - (u:)” 
6x 

+ (uv):I::; + (uv):‘:;~ 
SY 

+ gz + 
t& - CD: 

ax 

+ g 

2/ 

+ @-1 - @j 

6Y 

- & Kv + d)e43+1,2 - u:-1,2) - (v + a:-l)(u:;:,, - u:z:,2)] 

*; [+ + &:,:)(4+l,2 sy a,2 + fLY ;P2) ; 

_ (v + &;;;)(d-l,2 -$:,2 + P2 --$c2)]l, 
(15) 

n+1,; = n&j + at 1 w?:-,I2 ;@%+1,2 + (w:-1'2 sy (v4:+1'2 

+ P44 [( .:+1’2 sy P2 + v:+1,2 ; v:,,2)2 + 2 ( u:+1,2 ; u:-1,2)2 

+ 2 (“+l” & vi-1’2)2] - @, DZSS,j 

+ g [d+l,2b:+l - d) - d-,,2(d - &)I 

+ g [a:+l'2(y;+l - v:) - a$-1’2(q: - &l)] 

+ & [(v + d+1,2w/+1 - by) - (v + cm:-,,,)(cr~ - c&)] 

01(T;+l'2)(&/+l - &i) - (v + ap”)(g; - &j-l )I\, (16) 
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“+lDISSi’ = “DISSij f 6t 
1 

(u DZSS);wl12 - (u DISS):,,,, 
6x 

+ (u DISS):-1’2 - (0 DISS);+1’2 

SY 

+ (v + u,~:+,,,)(DISS;+~ - DISSij) 

- (v + a,~:-,,,)(DISS; - DZSS{el)/ 

+ & I+% [($q+1’2(y;+l - ?‘ij) - (*j;-1’2(p; - &‘)I 

+ (v + ap:+1’2)(DISSa:+1 - DISSI’) 

- (v + u3p2 )( DZSStj - DZSS:-‘) 1 j . (17) 

We have introduced @ as the “total” pressure, @ = 9 + $4. 
The variables, @, (I, and s are defined at cell centers. Note that in the above 

equations, values of certain variables are not centered at the points where they are 
normally defined. In such cases an average of adjacent values is implied. As 
examples, 

(d)2 ~ ‘i-l./2 i 4+1,2)‘, 

( 
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Now, to satisfy the incompressibility condition, we want 

‘M&i = 0, 

which is the finite-difference analog of Eq. (9), in which 

Dij ~ u:+1,2 - u:-1,2 + uy2 - uy2 . 
8X SY 

(18) 

If we use Qij as an abbreviation for 

Qij ~ [ &:+l)” + (&)” - 2(u,j>2 
3 [ 

+ (?p)2 + (u32 _ qv$ 
8X2 SY2 1 

+2[ 
(uz$:::; + (uu):I::; - (?.a$;:;; - <uu>;:;;; 

6x sy I , (19) 

and 

and also define 

then we may derive the fundamental equation 

n+lDij - nDij 
at 

= -Qtj - @@,j + wij. (21) 

Finally, we let 

R,i f ?!$ + Q( - Wij, (22) 
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so that the pressure equation to solve is 

Since the procedure for determining the pressures is based on the requirement 
that n+lDi’ vanish for every cell at the end of the time cycle, we derive the equation 
for @J: 

@:+1 + @:-1 + CD:+1 + @Z-l 
6X2 SY” 

_ - @ii (& + ++-) = -Rj, (23) 

or 

cjiij = 1+11 
i 
@;+l 

2(&+&j 

+ qL + ,:+1 + q-1 
6x2 SY2 

+ Rij) - q@j, (24) 

where 77 is an over-relaxation parameter, and the bar refers to the new iteration 
value. If Eq. (22) is inserted into Eq. (21), it is seen that n+lDf = 0 can result 
from the calculation of the new velocities, provided that the pressure equation is 
accurately solved. The relaxation of @i’ to its solution occurs through a succession 
of passes through the mesh. In each pass, the values of @J are found from Eq. (24) 
using the results of the current iteration on those sides where they are available. 
The convergence criterion that must be satisfied is 

where E = 2 x 10-4, or some other suitable small number. 
Although (Qij - W,j) might have been used instead of RC in Eq. (23), since the 

two differ in terms proportional to D, the use of R,j is more desirable in that the 
solution of Eq. (23) need not be nearly so accurately derived in keeping the 
divergence to a low level [14]. This becomes an important consideration, as economy 
may be gained in computer usage in solving Eq. (24) in the iteration procedure. 
It should be mentioned, in addition, that the cumulative results of a MAC cal- 
culation are independent of whether (QJ - W,j) or Rij is used in Eq. (23), in the 
limit of a very stringent E in the convergence criterion. 

The basic steps in the solution of a cycle are as follows. 

(1) Compute the new values Qij for all cells, using Eqs. (18) (19), (20), (22), 
and (24). From these results, v can also then be found. 

(2) Compute the new values of u:-~,, and u:-lj2 in Eqs. (14) and (15), using 
the new pressures obtained above. 
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(3) Compute the new turbulence properties through Eqs. (16) and (17), from 
which gij and Si’ can be obtained. 

(4) Finally, the marker particles are moved and any necessary bookkeeping 
is performed to begin the next cycle. 

The boundary conditions to be used for a left wall will be discussed for each 
boundary type, and conditions at other walls are analogous. The indices (3 will 
refer to the cell inside the system, and (iii) will refer to the imgainary cell outside 
the system, as shown in Fig. 2. In fact, it is advisable to surround the mesh with 
“fake” cells, storing the appropriate quantities as shown in Fig. 2, and the program 
can then automatically compute any functions thereof very simply, 

OUTSIDE WALL FLUID SIDE 

j --- 

FIG. 2. Field variable positions at a left boundary. 

(a) Consider first the case of an input boundary, which allows fluid to move 
into the system at a given velocity. Here the input velocity, z&,,, , along with 
&I,2 and s!-,,, , are prescribed. 

(1) u!-~,, = the prescribed boundary velocity, 

(2) d-2/2 = u:+1,2 3 

(3) Jr;‘2 = +$*1/2, which forces v = 0 on the boundary, 
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(5) s;-1 = 2(S:-,,2) - sj, 

(6) a:-, = 2(o:-,,z) - a,?‘. 

(b) The next case considered is that of an output boundary, which allows 
fluid to leave the system: 

(1) Ll/2 = u:,,,, ; 

(2) A/2 = 4+1,2 ; 
(3) &‘2 = p; 

(4) @Jpl = @d; 

(5) slpl = sij; 

(6) CT-l = ui3. 

Note that the above U’S, v’s, and Q’s have no gradients across the boundary. A 
linear extrapolation would also be possible for them. 

(c) The final possibility we will discuss will be that of rigid walls. A rigid 
wall may be of either of two types, free-slip or no-slip. A free-slip wall may be 
considered to represent a plane of symmetry, rather than a true wall, or if the fluid 
is viscous, a non-adhering or thin-boundary-layer surface. For a free-slip wall, 
the normal velocity reverses while the tangential velocity remains the same. For 
a no-slip wall, the tangential velocity also is reversed. 

For the free-slip wall we have 

(I) u:-,,, = 0, 

(2) u:--3,2 = -u:+1,, ) 

(3) p/2 = 4*112, 

(4) c& = @ij - g,i?x, 

(5) s:-1 = Si), 

(6) CT-l = ui3. 
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For the no-slip wall we have 

(1) 4-112 = 0, 

(2) d-3/2 = -d+1,2 7 
if112 (3) upy2 = -vi ) 

(4) 

(5) s:-, = -s;, 

(6) . . U’i-l = - ui3 

The conditions for s and 0, for both free-slip and no-slip walls, allow for no 
fluxes of d or DISS through the wall. As u~-,,~ = 0 at the wall, the convective 
fluxes are assured to vanish. Also, if the wall is free-slip, 

au as 
8 Normal = a Normal = 0, 

and if the wall is no-slip, then s = u = 0 at the wall. 

NUMERICAL STABILITY AND ACCURACY 

The computational stability of the proposed finite-difference equations is 
affected by several properties of the method. 

The first of these relates to the stability of the differential equations themselves. 
For certain types of problems in which the dynamics imply pressure equilibrium, 
Eq. (2) shows that v + 2q/3 is constant. The diffusion coefficient in Eq. (3) then 
becomes v + (T(OI - 28/3~), which must be positive. This, of course, implies a 
consistency requirement on the basic turbulence theory, but it also shows a possible 
source of numerical trouble for calculations that attempt to explore variations in 
the universal constants. Equation (4) shows a similar restriction, namely, that 
v + CT(~~ - 2u,/3 + a,) be positive in such dynamic-equilibrium flows. For more 
general flows, these same restrictions would also appear to be necessary. 

For stability, the most stringent of the numerical-technique requirements appears 
to be the one related to diffusion. In addition to the MAC-technique restrictions, 
it is necessary that 

2(v + u&r) St < 
sx2sy2 

6x2 + sy2 ’ 

in which a, is the largest of 1, 01, and a2 + a3 . Since CJ varies in both space and 
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time, this stability requirement is not fixed, but requires, instead, continual checking 
and appropriate adjustment of St. 

The time step, at, can also be seriously limited by accuracy considerations. In 
regions of strong creation or decay, where the turbulence field variables are 
changing rapidly, it is necessary for accuracy that the relative change per cycle 
of q or 3 be small. Otherwise the result can easily be an over-shoot of ultimate 
value, or the occurrence of untenable negative values. For example, in the decay 
of q, we require 

2vA 
-+-gl 

which may be severely restrictive in regions of small s. (Note the physical inter- 
pretation of this restriction, namely, that molecular diffusion must progress in one 
cycle much less than the distance of one integral scale length, or eddy radius, a 
completely reasonable requirement.) 

The time-step restriction can be relaxed slightly if the transport equations are 
written (at least in part) in implicit form. Techniques for easing diffusional 
instability restrictions by implicit formulations are well-known, and could be 
highly effective here. For creation and decay there is also potential gain. Consider 
again the decay part of the q equation. In the proposed explicit form, 

4 n+1 _ 4” 2vA”qn --= 
St -(s”)27 

while alternatively we could use q n+l in the term on the right, so that 

9 n+1 = 4" 

I++$& 

Since the denominator is always positive, the behavior is considerably improved. 
Generalization to the full q and 33 equations therefore prevents one type of large 
St catastrophe, namely, the decay to negative values. 

In contrast to the stability requirements added by the inclusion of turbulence 
transport, there is one MAC-method stability requirement that is considerably 
relieved. In MAC calculations, it is necessary that 

v > constant x 6x2 -@- 
dx ’ 

in which du/dx is a measure of the maximum velocity gradient and the constant 
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has magnitude of order unity. This restriction is essentially one of molecular 
Reynolds number, Re, namely, 

where D is a representative dimension in the flow. With turbulence transport, the 
condition becomes instead, 

Re 5 (;;)‘(l + %). 

Since u/v can be as great as lo3 or even more, the range of calculable Reynolds 
numbers is enormously extended. 

DISCUSSION 

Numerical calculations of fluid flow problems with turbulence are presently 
impossible unless the turbulence can be represented by some appropriate model. 
For practical applicability, the model must be relatively simple and capable of 
coupling with numerical methods for solution of the mean-flow problem. 

The numerical-solution technique described in this paper presents one possible 
approach to the problem that is both broad in scope of applicability, yet minimal 
in its complexity. Various successful proof-test calculations have been presented 
elsewhere; the present discussion is designed to contain all the necessary data for 
preparation of additional computer programs to examine the variety of examples 
that still need investigation. 
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